Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit

نویسندگان

  • Joseph E. Borovsky
  • Reiner H. W. Friedel
  • Michael H. Denton
چکیده

Using five spacecraft in geosynchronous orbit, plasmaspheric drainage plumes are located in the dayside magnetosphere and the measured pitch angle anisotropies of radiation belt electrons are compared duskward and dawnward of the plumes. Two hundred twenty-six plume crossings are analyzed. It is found that the radiation belt anisotropy is systematically greater dawnward of plumes (before the electrons cross the plumes) than it is duskward of plumes (after the electrons have crossed the plumes). This change in anisotropy is attributed to pitch angle scattering of the radiation belt electrons during their passage through the plumes. A test database in the absence of plumes finds no equivalent change in the radiation belt anisotropy. The amount of pitch angle scattering by the plume is quantified, scattering times are estimated, and effective pitch angle diffusion coefficients within the plume are estimated. The pitch angle diffusion coefficients obtained from the scattering measurements are of the same magnitude as expected values for electromagnetic ion cyclotron (EMIC) waves at high electron energies (1.5MeV); however, expected EMIC diffusion coefficients do not extend to pitch angles of 90° and would have difficulties explaining the observed isotropization of electrons. The pitch angle diffusion coefficients obtained from the scattering measurements are of the same magnitude as expected values for whistler mode hiss at lower electron energies (150 keV). Outward radial transport of the radiation belt caused by the pitch angle scattering in the plume is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relativistic-electron dropouts and recovery: A superposed epoch study of the magnetosphere and the solar wind

[1] During 124 high-speed-stream-driven storms from two solar cycles, a multispacecraft average of the 1.1–1.5 MeV electron flux measured at geosynchronous orbit is examined to study global dropouts of the flux. Solar wind and magnetospheric measurements are analyzed with a superposed epoch technique, with the superpositions triggered by storm-convection onset, by onset of the relativistic-elec...

متن کامل

Atmospheric losses of radiation belt electrons

[1] A numerical model of the low-altitude energetic electron radiation belt, including the effects of pitch angle diffusion into the atmosphere and azimuthal drift, predicts lifetimes and longitude-dependent loss rates as a function of electron energy and diffusion coefficient. It is constrained by high-altitude ( 20,000 km) satellite measurements of the energy spectra and pitch angle distribut...

متن کامل

A study of magnetic drift motion of particles around the equatorial plasmapause by using the cluster observation

On August 7, 2003 the Cluster spacecraft moved through the dayside magnetosphere. The energetic particle spectrometer on board Cluster provided measurements of an extensive range of energy. Besides, satellite measurements of geomagnetic field showed a gradient magnetic field. It is known that an inhomogeneity of the magnetic field leads to a drift of charged particles. In this paper, the drift ...

متن کامل

The link between a detached subauroral proton arc and a plasmaspheric plume

[1] Observations of detached subauroral proton arcs by the FUV instrument on the IMAGE spacecraft have been recently reported and shown to be produced by ring current ions precipitating in the afternoon local time sector during geomagnetically disturbed periods. Data from June 18, 2001 show a direct link between a subauroral proton arc and a global observation of a plasmaspheric plume by the IM...

متن کامل

Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014